ENERGY TRANSFER PROCESSES IN MONOCHROMATICALLY EXCITED ${}^{13}C^{16}O$ and ${}^{12}C^{18}O$ (A¹II v' =13) MOLECULES

A. C. Vikis

Division of Chemistry, National Research Council of Canada, Ottawa, Ontario, KIA OR6 (Canada)

The narrow unreversed 123.58 nm resonance line of Kr excited exclusively the $A^{1}\pi - \chi^{7}\Sigma^{+}$ (13,0) Q(13) transition of $^{13}c^{16}0$. A broader reversed 123.58 nm Kr resonance radiation excited the $A^{1}\pi - \chi^{1}\Sigma^{+}$ (13,0) P(11), Q(13), and R(15) transitions of $^{13}c^{16}0$ and the P(10), Q(11), and R(14) transitions of $^{12}c^{18}0$.

The excited ${}^{13}C^{16}O$ and ${}^{12}C^{18}O$ molecules fluoresce in the $A^{1}\Pi - \chi^{1}\Sigma^{+}$ (13,v") resonance progression which was observed in the 200 to 310 nm spectral region (Fig. 1). Electronic quenching of the $A^{1}\Pi - v'=13$ state and rotational relaxation were studied as a function of the pressure of various molecules.

The ${}^{13}C^{16}O$ A¹ π v'=13 state was guenched by: * ${}^{13}C^{16}O(198)$, ${}^{12}C^{18}O(38.0)$, ${}^{12}C^{16}O(57.1)$, $CO_2(119)$, $O_2(43)$, N₂(78.5), H₂(19.0), D₂(29.3), He(<0.4), Ar(3.23), and Xe(114). The ${}^{12}C^{18}O$ A¹ π v'=13 state was quenched by: * ${}^{12}C^{18}O(257)$ and ${}^{12}C^{16}O(28.0)$. The ${}^{13}C^{16}O$ A¹ π v'=13 J'=13 state was rotationally relaxed by: * He(3), ${}^{13}C^{16}O(16)$, and ${}^{12}C^{18}O(16)$.

The quenching cross sections of the $A^{1}\Pi$ v'=13 state by the various molecules correlate with the availability of accessible electronic states and/or chemical reaction channels.

*The cross section, defined as $\sigma_q = k_q/c$, is given in A^2 in parenthesis.

132

The striking variation of the electronic quenching cross sections of the $A^{1}\Pi$ v'=13 state by the various isotopic CO molecules was attributed to fast energy transfer processes between the $A^{1}\Pi$ v'=13 state and a number of adjacent electronic states ($a^{3}\Pi$, $a^{+3}\Sigma^{+}$, $d^{3}\Delta_{1}$, $e^{3}\Sigma^{-}$, $I^{1}\Sigma^{-}$, $D^{1}\Delta$) which are known from spectroscopic measurements to perturb the $A^{1}\Pi$ state of CO¹. Similar variations in the quenching data of Melton et al ^{2,3} on the $A^{1}\Pi$ v'=9 and v'=14 states of CO corroborate the above proposition.

References:

- R. W. Field, B. G. Wicke, J. D. Simmons, and S. G. Tilford, J. Mol. Spectrosc. <u>44</u>, 383 (1972).
- L. A. Melton and K.-C. Yiin, J. Chem. Phys. <u>62</u>, 2860 (1975).
 L. A. Melton and H.-T. Yao, J. Chem. Phys. <u>64</u>, 4689 (1976).

The ${}^{13}C^{16}O A^{1}\Pi - X^{1}\Sigma^{+}$ (13,v") resonance progression with 2.22 Torr ${}^{13}C^{16}O$ (upper trace) and with 61.4 Torr natural isotopic abundance CO (lower trace). The arrows indicate the same progression of ${}^{12}C^{16}O$, had it been excited.